Topological Issues of Raster Space from Viewpoints of Pansystems

نویسندگان

  • Zhilin Li
  • Yongli Li
  • Yong-qi Chen
چکیده

In recent years, models of spatial relations have attracted much attention from GIS community, especially topological relations. In this paper, some basic topologic models for spatial entities in both vector and raster spaces are discussed. To make the concepts more formalized, some new concepts from a new branch of mathematics -pansystems -are adopted. In doing so, the basic concepts of pansystems are introduced, upon, some important concepts on raster space, as a spatial reference system, are discussed. Raster topologies are formalised. Basic topological components of spatial entities in raster space are defined and the topological issues are examined, such as topological paradox and the dependency of raster topology on vector topology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological Relations Between Regions in R² and Z²

Users of geographic databases that integrate spatial data represented in vector and raster models, should not perceive the differences among the data models in which data are represented, nor should they be forced to apply different concepts depending on the model in which spatial data are represented. A crucial aspect of spatial query languages for such integrated systems is the need mechanism...

متن کامل

On the topological equivalence of some generalized metric spaces

‎The aim of this paper is to establish the equivalence between the concepts‎ ‎of an $S$-metric space and a cone $S$-metric space using some topological‎ ‎approaches‎. ‎We introduce a new notion of a $TVS$-cone $S$-metric space using‎ ‎some facts about topological vector spaces‎. ‎We see that the known results on‎ ‎cone $S$-metric spaces (or $N$-cone metric spaces) can be directly obtained‎ from...

متن کامل

M-FUZZIFYING TOPOLOGICAL CONVEX SPACES

The main purpose of this paper is to introduce the compatibility of $M$-fuzzifying topologies and $M$-fuzzifying convexities, define an $M$-fuzzifying topological convex space, and give a method to generate an $M$-fuzzifying topological convex space. Some characterizations of $M$-fuzzifying topological convex spaces are presented. Finally, the notion of $M$-fuzzifying weak topologies is obtaine...

متن کامل

Menger probabilistic normed space is a category topological vector space

In this paper, we formalize the Menger probabilistic normed space as a category in which its objects are the Menger probabilistic normed spaces and its morphisms are fuzzy continuous operators. Then, we show that the category of probabilistic normed spaces is isomorphicly a subcategory of the category of topological vector spaces. So, we can easily apply the results of topological vector spaces...

متن کامل

s-Topological vector spaces

In this paper, we have dened and studied a generalized form of topological vector spaces called s-topological vector spaces. s-topological vector spaces are dened by using semi-open sets and semi-continuity in the sense of Levine. Along with other results, it is proved that every s-topological vector space is generalized homogeneous space. Every open subspace of an s-topological vector space is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010